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Abstract. A comprehensive approach to NDE and SHM characterization error (CE) evaluation is presented that follows 
the framework of the ‘ahat-versus-a’ regression analysis for POD assessment. Characterization capability evaluation is 
typically more complex with respect to current POD evaluations and thus requires engineering and statistical expertise in 
the model-building process to ensure all key effects and interactions are addressed.  Justifying the statistical model choice 
with underlying assumptions is key. Several sizing case studies are presented with detailed evaluations of the most 
appropriate statistical model for each data set.  The use of a model-assisted approach is introduced to help assess the 
reliability of NDE and SHM characterization capability under a wide range of part, environmental and damage conditions.
Best practices of using models are presented for both an eddy current NDE sizing and vibration-based SHM case studies.
The results of these studies highlight the general protocol feasibility, emphasize the importance of evaluating key 
application characteristics prior to the study, and demonstrate an approach to quantify the role of varying SHM sensor 
durability and environmental conditions on characterization performance.

INTRODUCTION

The current U.S. Air Force practice for maintaining aircraft structures follows the Aircraft Structural Integrity 
Program (ASIP) methods, as documented in MIL-STD-1530C [1].  Following this damage tolerance approach, the 
periodic inspection of structures is performed using validated nondestructive evaluation (NDE) techniques.  In 
addition, there is a significant interest to certify the capability of nondestructive evaluation techniques to perform 
damage characterization. As the maintenance of the structural components of aircraft moves from time-based 
maintenance to condition-based maintenance, there is a need for innovative methods to not simply detect damage, but 
to completely characterize it in structural components [2].  For example, accurate knowledge of crack location and 
size would improve decision-making concerning maintenance actions, reduce unnecessary teardowns, minimize 
maintenance induced damage, and provide key information for prognostics programs. Concerning emerging structural 
health monitoring (SHM) techniques, the necessary component of any reliability demonstration is ensuring that 
damage characterization errors are well understood and within acceptable ranges. This information is critical in order 
to determine the real benefit of an SHM technique on the economic service life and risk for an aircraft [3].

42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
AIP Conf. Proc. 1706, 200002-1–200002-10; doi: 10.1063/1.4940646
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Probability of detection (POD) evaluation procedures have been developed to validate the reliability of NDI 
techniques and used by the USAF in support of ASIP [4].  Building on prior work, the goal of this effort is to develop 
a procedure with statistical tools to properly evaluate NDE characterization techniques for accuracy in sizing and/or 
locating damage. A comprehensive approach to NDE and SHM characterization error (CE) evaluation is presented 
that follows the framework of the ‘ahat-versus-a’ regression analysis for POD assessment.  A key point is that 
reliability evaluation is likely more complex with respect to current POD evaluations and indicates the importance of 
engineering and statistical expertise in the model-building process to ensure all key effects and interactions are 
addressed. Several sizing case studies are presented with detailed evaluations of the most appropriate statistical model 
for each set.  Lastly, a discussion is presented on the use of a model-assisted approach to assess the reliability of NDE 
and SHM characterization capability.  Best practices of using models are presented for both an eddy current NDE 
sizing and vibration-based SHM case studies.  The results of these studies highlight the general protocol feasibility, 
emphasize the importance of evaluating key application characteristics prior to the study, and demonstrate an approach 
to quantify the role of varying SHM sensor durability and environmental conditions on characterization performance.

EVALUATION OF NDE CHARACTERIZATION CAPABILITY

MIL-HDBK-1823A provides procedures and guidance on statistical analysis for performing a probability of 
detection (POD) evaluation to validate the reliability of NDI techniques [4].  Building on this prior work, the goal of 
recent work has been to develop a procedure with statistical tools to properly evaluate NDE characterization 
techniques for sizing and/or locating damage.  There have been some recent efforts to define and demonstrate a 
complete process for evaluating sizing capability, specifically addressing discontinuities in welds and corrosion in 
aircraft structures. (A survey of this prior work is presented in [5].) However, there are some outstanding issues with 
the current practice for the quantitative evaluation of sizing capability with respect to NDE technique evaluation.  One 
metric frequently cited is the calculation of the 95% safety limit against undersizing (LUS) bound for quantifying 
sizing performance for discontinuities in welds [6].   However, there are some important assumptions, such as linearity 
in the response and constant variance with changes in flaw size that should be addressed before using this metric.  In 
addition, the simplistic character of the bound from a least squares fit does not ensure it will adequately address the 
true variation of the bound with the varying distribution of discontinuities and limited sample numbers.  A more 
rigorous process is needed to ensure that the bounds on sizing performance being reported from any study are valid. 

From the perspective of quantifying the reliability of NDE and SHM systems, there is a need to evaluate the 
relationship between the accuracy in estimating the damage or material state estimates (â) with respect to the actual 
condition (a).  An evaluation of the characterization error (CE), ê = â - a, for all critical location and sizing estimates 
is necessary.  Characterization error with prediction bounds is the metric that will be used for condition-based 
maintenance and prognosis programs to help evaluate remaining life and determine necessary maintenance actions. 
This problem of evaluating characterization error with prediction bounds as a function of a critical parameter such as 
flaw size is shown in Fig. 1(a).  This evaluation is generally similar to the current procedure found in MIL-HDBK-
1823A [4] for the evaluation of the relationship between an NDE measurement (â) and a critical flaw size (a) as shown 
in Fig. 1(b).  Thus, the proposed foundation for the experimental-based CE procedure including will be MIL-HDBK-
1823A [5, 7].

FIGURE 1.  Evaluation of (a) characterization error (CE) (êj) with respect to damage conditions (ak) and (b) relationship between 
discontinuity size (a) and measurement response (â) given by an â-vs-a probability of detection (POD) model.
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IMPLICIT STATISTICAL ASSUMPTIONS IN REGRESSION ANALYSIS 

Ordinary Least-Squares (OLS) linear regression analysis relies on assumptions concerning the relationship 
between reality and the process being modeled.  Perhaps the most obvious assumption is, “The model must look like 
the data”.  While this may be self-evident, checking to see if the assumption holds is less so in practice.  There are 
five other implicit assumptions that must be satisfied for the resulting parameter estimates to be useful:

1. The response must be continuous and observable.
2. The model must be linear in the parameters.
3. The variance must be homoscedastic (uniform variance)
4. The observations must be uncorrelated (with respect to time, space, or both).
5. The errors must be Normal.

If any of these assumed conditions are not met, the resulting analysis will be wrong, even though that fact may be far 
from obvious.  The assumptions also hold for the method of Maximum-Likelihood Estimation (MLE), frequently used 
in POD evaluation of NDE and SHM capability.  For more details on the implicit assumption in regression analysis, 
see ref. [8].

The importance of verifying assumptions of the statistical model is demonstrated in Fig. 2.  An example is first 
presented in Fig. 2(a), where all response points are observed.  This is not always the case.  For example, sometimes 
the response is below some noise threshold, or above some saturation value.  In that case, it is censored.  Since these 
data points are unknown (other than being below some noise or above some saturation level), it is obviously not 
possible to compute the difference (error) between the observation and the model.  Thus, finding a summed squared 
error is not possible. However, they should not be ignored, which means throwing away useful information. Figure 
2(b) illustrates that the OLS parameter estimates based on replacing an observation with its censoring value results in 
an erroneous, anticonservative, POD vs size model.  This is clearly unacceptable.  Fundamentally, censored data OLS
regression is untenable.  However, it is possible to frame the problem in terms of in terms of likelihood estimation.
With likelihood, there are a collection of observations and the objective is to evaluate the likely mean and standard 
deviation of the data.  How can censored observations be address?  We don’t know X, only that it is smaller than, or 
larger than, some censoring value.  We also don’t know the ordinate.  Since X could be anything in the censored 
region, one can define the likelihood of a censored observation as all of them, i.e. the integral of the probability density 
below, or above, the censoring value.  Then, the optimization problem is solved.  Rather than minimizing the summed 
error, the likelihood can be maximized through an optimization scheme.  When the data are not censored, maximum 
likelihood estimators are exactly equal to OLS estimators, so we don’t need to jettison 200 years of OLS experience 
to use the MLE criterion.  However, OLS is powerless to deal with censoring, but likelihood handles censored data 
easily.  In Fig. 2(c), results are presented using MLE with the regression data in Fig. 2(b), which shows the correct 
censored regression fit as compared with the OLS fit of all the data in Fig. 2(a).  It is not perfect, but it is far superior 
to using the wrong model. For more details on the theory on MLE, see ref. [8].

FIGURE 2. (a) OLS requires all responses to be observable.  (b) Replacing censored values with the censoring value skews the 
result anticonservatively. (c) Censored regression using MLE (blue dashed line) correctly accounts for observations with actual 

responses obscured by background noise and thus censored
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It is important to consider that NDE and SHM characterization error evaluation will likely be more complex with 
respect to current POD evaluations and indicates the importance of engineering and statistical expertise in the model-
building process to ensure all key effects and interactions are addressed. As with any POD evaluation study, it is 
important to plot the data and determine the best statistical model to apply to the evaluation.  Before immediately
fitting a statistical model to the data, an intermediate step is needed to evaluate the presence and frequency of several 
possible classes of poor characterization results due to: (1) weak signals from small discontinuities masked by 
measurement noise, (2) saturated signals or conditions exceeding the inversion algorithm design, (3) ill-posed 
inversion problems leading to clustering in local minima, (4) random poor characterization performance due to a 
process failure independent of flaw size.  For more information on regression models for evaluating characterization 
error, see ref. [5, 7-8].

EDDY CURRENT NDE CASE STUDY

An eddy current crack sizing case study is presented to highlight examples of some of these complex characteristics 
of analyzing sizing error data [5]. First, weak signals from small discontinuities masked by measurement noise will 
undoubtedly be difficult to size.  Such data should be practically removed from the evaluation and clearly reported.  
For this case study, indications ‘A’ and ‘B’ shown in Fig. 3(a) appear to be associated with very small flaw signals.  
In a POD evaluation, this characteristic in the data is called ‘left censoring’.  Statistical methods in POD evaluation to 
address left-censored data can be applied for CE evaluation.  Second, strong signals from very large discontinuities 
can also present several issues for NDE sizing techniques.  In practice, it is possible that operators do not require exact 
sizing when certain flaws become exceptionally large.  For example, if a crack above a certain large size is found, the 
part will simply be replaced.  In POD evaluation, this characteristic of saturated data is called ‘right censoring’.  
Statistical methods in POD evaluation to address right-censored data can be directly applied to CE evaluation.  

At this stage, the characterization error results are plotted with ‘left’ and ‘right’ censoring as shown in Fig. 3(b)-
(d).  For the BHEC inversion case study problem, estimated crack sizes with lengths below 50 mils and/or crack depths 
estimated below 18 mils, and crack depths above 100 mils were removed from the data set.  Next, it is important to 
check the data and evaluate where secondary clusters or trends in the data are present.  Certain challenging inverse

FIGURE 3. Sizing results for BHEC (a) crack length.  Characterization error for censored inversion results for (b) crack depth, 
(c) crack length and (d) crack width.  Plots include a linear model fit (solid line) with confidence bounds (dashed line) and

corresponding prediction bounds (dash-dot line).
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problems are known to have issues with ill-posededness, where the results are prone to clustering at a poor solution 
due to getting caught in local minima.  Case ‘B’ is an example where signals near the noise threshold are difficult to 
size and then being mistakenly called in a region that underestimates depth while overestimating length.  If such data 
are not ‘left’ censored or ‘right’ censored, then more sophisticated statistical models may be needed to address such 
results.  Lastly, for some NDE inspections that are highly dependent upon human factors, random poor characterization 
performance can sometimes arise.  Such instances are assumed to be due to a process failure that is considered 
independent of flaw size.  This condition is referred to as random missed call rate in a POD evaluation and certain 
statistical methods have been developed to evaluate the rate of random missed calls during a POD study.  For the 
characterization error results for crack depth shown in Fig. 3(b), there are a few indications, ‘D’ and ‘E’, that appear 
to be significantly outside the main scatter of data.  Ideally, further analysis of the source for such cases is needed to 
determine if exceptionally poor data are the source of the ‘outlier’ or if it is simply due to having limited data samples 
and should be included in the primary statistical model fit.  For this example, indications ‘D’ and ‘E’ will be included 
in the primary statistical model fit. For the characterization error model for the BHEC sizing problem, a linear model 
with covariance was evaluated for the results in Fig. 3(b)-3(d) based on the following linear model relationship:  

),()( 1 CCE N . (1)

The fit was performed using maximum likelihood estimation in R statistical software.  The characterization error 
model plots in Fig. 3 include a linear model fit with 95% confidence bounds (in blue) and 95% prediction bounds (in 
black dash-dot).  In general, the linear model fit appears to be adequate for the censored data set presented here. 
However, even with this generally well behaved data set, there is a significant change in the lower bound for error in 
the crack length and depth estimates as a function of changing varying size.  This demonstrates the need to take care 
when attempting to report a single value that defines the entire lower bound for the ‘safety limit against undersizing’.  
Operators should not ever mandate generating such simple metrics when they are often not appropriate for the data.

BEST PRACTICES FOR SHM CAPABILITY EVALUATION

The successful deployment of systems for health monitoring of structures depends on appropriate verification and 
validation (V&V) of these SHM systems. The V&V method must explicitly evaluate all aspects of the SHM system 
that can affect its capability to detect, localize, or characterize damage. Moreover, it must evaluate the effects that 
usage and environmental conditions have on these capabilities over time. As SHM methods depending on permanent, 
on-board mounted damage sensing systems continue to be proposed and developed for complementing ground-based 
NDE inspections for aircraft structural integrity purposes, it is necessary that the reliability of these damage sensing 
systems be assessed with a rigor that is suitable and sufficient for the function that they are expected to perform within 
the ASIP methodology [13]. For damage detection, this necessarily results in the need for a POD determination. For 
localization and characterization, characterization error metrics and their evaluation process have been presented and 
demonstrated [5, 7-8]. 

Recent work within the structural health monitoring community has strived to define the necessary requirements 
for SHM certification [9-11] and demonstrate SHM capability through POD evaluation studies [12-25].  In most cases, 
these POD studies are quite limited in scope, where the POD results only apply to the constraints and assumptions of 
each study.  However, important insight has been identified through these efforts.  A recent workshop on SHM 
Reliability was held in 2015 to discuss progress and address remaining challenges [26].  There does appear to the 
consensus within the community that if SHM is used to mitigate life-cycle risk of an airframe under the framework of 
ASIP, a rigorous capability study following the spirit of MIL-HDBK-1823A for POD evaluation is necessary.
However, many challenges remain, especially for the certification of global SHM systems.  Key issues can be 
summarized as follows:

Extreme environmental operation conditions which can impact sensor performance and damage observability,
Sensor degradation and issues with on-board sensor calibration over time,
Sensitivity to critical damage while minimizing false calls due to varying non-damage conditions, (For SHM,
environmental conditions, material properties, and part geometry will all exhibit some degree of variation for
each instance of monitoring.  Detecting damage in the presence of non-critical changes to the structure is
necessary for SHM systems to provide any value to ASIP.)

200002-5
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Sensitivity to damage as a function of both damage location and sensor placement.   (It has been shown in several
local and global SHM reliability studies [15-16, 23] that one cannot typically assume independence for either
sensor location or defect location, and generate a single POD curve covering all inspection scenarios.  All
statistical model assumptions must be properly validated in any POD studies.)

The perspective of the authors of this paper is that the procedures in references [4, 12-17] provide an excellent
framework for SHM capability evaluation and address many of the above challenges. A summary of this framework 
is as follows:  

This protocol includes four critical components: (1) a procedure to identify the critical factors impacting SHM
system performance; (2) a multistage or hierarchical approach to SHM system validation; (3) a model-assisted
evaluation process to address the wide range of expected damage conditions that cannot be experimentally tested;
and (4) POD, probability of false call (POFC) and probability of random missed call (POMC) evaluations with
confidence bounds estimation and uncertainty analysis for damage. [14]
The multistage evaluation approach (2) includes (a) laboratory testing of relevant flaws, (b) laboratory sub-
component testing including environmental and loading conditions, (c) a system level life-testing (full-scale
fatigue testing if feasible), (d) on-structure demonstration, and (e) final system verification. [14,17]
The following opportunities in the POD model evaluation process (3 and 4) have the potential to impact sample
and testing requirements: (a) careful model factor selection addressing system variation, (b) physics-based model
calibration including uncertainty bounds assessment for the specific inspections of interest, (c) controlled physics-
based model validation to ensure the model is valid over desired range of application, (d) evaluation of POD
using two-level analysis to address input parameter variability with uncertainty bounds, (e) integration of
experimental data generated from a designed experiment using a Bayesian framework to revise the prior
distributions of inputs and achieve new posterior distributions [28], and (f) inverse methods to ideally address all
uncontrolled parameter variations in the measurement. [14-16]

However, the devil is in the details.  More rigorous demonstrations are needed for the most-promising SHM
technologies to work through these evaluation procedures and address outstanding challenges, especially performing
evaluations within a limited budget. One case study for a vibration-based SHM system is given below. 

CASE STUDY FOR SHM CAPABILITY EVALUATION

The example used for this initial demonstration of the protocol is a system for detecting the presence of damage 
using permanently mounted transducers. A test article representing an aircraft structure of medium complexity was 
designed and built. The test article consists of three plates connected by two lap joints with fasteners. In addition, a 
fixture was built for supporting the test article. Fatigue crack damage around the fastener holes can be simulated by 
manually created thin cuts at selected locations. The test fixture design provides the capability to vary critical 
parameters of the system with a focus on force loading boundary conditions, joint fastener torque conditions, and 
temperature. The initial demonstration on this test article and fixture uses a vibration based damage detection method. 
Variations in operational temperature were simulated by testing the system inside a carefully controlled Thermotron 
SE-1200 environmental chamber. More details on the hardware, DAQ system and damage detection algorithm used 
in the experiment can be found in [15-16].

Key Factor Evaluation Studies

Following the protocol introduced in reference [14], prior to designing the validation test matrix, the following 
factors were assessed through controlled studies: (a) mass loading and unloading, (b) fastener torque, (c) boundary 
condition variation, (d) temperature variation and temperature gradients, (e) sensor bond quality, (f) ambient noise, 
and (g) flaw growth. More details on the factor evaluation studies are presented in reference [15-16]. Some key 
results highlighting the need for this task are provided below. 

Thermal loading studies were performed by varying the ambient temperature from -20 F to 150 F. During this 
study, the thermal capacity of the panel end conditions fixtures was found to produce significant thermal gradients 
across the test article. During heating and cooling periods, temperature gradients as high as 45 F across the test 
specimen were observed. For validation studies, an estimate of expected gradients ‘in the field’ is needed. An 
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assumption was made for the validation study that temperature gradients in the region of interest will be primarily 
limited to +/- 10 F. 

Failure of accelerometer bonding was observed several times during thermal testing. These failures occurred 
during the prolonged high temperature runs at 150 F. While vibration-based damage detection systems are proposed 
as global methods with some sensor redundancy, relying on a single reference sensor will result, upon bond 
degradation, in either highly degraded performance and/or complete failure of the damage detection system. Sensor 
and sensor bonding reliability must be accurately assessed as part of a validation study.

An initial study on the effect of damage growth was performed to ensure adequate sensitivity during the final 
validation study. Customized XActoTM blades were used to make cuts in the aluminum plates. Cuts were initially 
made at 0.063" (1/16") increments up to 0.63". For the first series of cuts up to 0.25", sensitivity to notch length 
increases was observed, but the trend was small relative to noise, and not quite linear. Greater sensitivity to the larger 
cuts was observed and clear sensitivity to notches on the order of 0.63" was demonstrated. Note, a significant increase 
in the damage metric was observed after a two week delay between the end of the 0.25" notch cut and the start of the 
0.31" notch cut. Relaxation of the boundary conditions over time was thought to be the source of the change.  For 
validation, controlled time delays should be included into such studies to isolate and address long-time effects.

From the factor studies, the validation study design consisted of growing flaws by artificially cutting the structure 
at two fastener site locations. A series of environmental and boundary conditions were studied after each flaw growth 
scenario:  temperature variation (+/- 40 F), temperature gradients, loading and unloading of 10 lb. mass, a simulated 
maintenance action at a set of fasteners including the case of minor loosening, and reinstallation and replacement of 
accelerometers. Much more detail on these factor studies and validation study design can be found in [15-16].

Model-based POD Analysis Approach

Conventional probability of detection (POD) evaluation for many quantitative NDE applications first uses 
empirical data to evaluate statistical relationships between the measurement response, â , and the primary flaw size 
variable, a. Through application of a detection criterion as part of the NDE procedure, this statistical ‘ â versus a’
model can be used for evaluating the POD curve and probability of false call (POFC) rate, which together are usually 
referred to as “a POD model”. The detection system can also be abstractly represented by a set of random variables 

ia that act as inputs to a measurement model. Input variables can be categorized as being controlled (e.g. flaw size 
and material properties) or uncontrolled (e.g. liftoff, flaw morphology, and measurement noise). Detection consists of 
the measurement model output â being classified (or “called”) according to pre-specified rules (e.g. a threshold). 

The model-assisted POD (MAPOD) approach proposes to replace a conventional statistical fit in the measurement 
model with a complete physics-based model, f, calibrated for a given set of experimental conditions [27]. This 
relationship is given by:

iafa 10ˆ , (2)

where 0 and 1 represent the model calibration parameters, and represents the residual error between the model and 
the experimental data. Estimating the statistics of 0, 1, and necessitates specific experimental sampling 
requirements. Variations due to flaw size and environmental (noise) conditions, for example, are represented in the 
model as probability distributions of the input variables. Hybrid models incorporating both empirical and physics-
based components can be implemented to address all key factors including those that cannot be adequately simulated. 

For this study, due to a lack of a validated physics-based model, a surrogate model fit using empirical data was 
developed for the evaluation. The primary variable associated with the critical flaw size is crack (notch) length, a1.
Controlled secondary variables in the study include flaw location (a2), mean temperature (a3), temperature gradients 
(a4), ambient noise level (a5). A response surface methodology was applied here to estimate the effect of each factor 
on the damage metric response and construct a model,

iaf including uncertainty. Random events such as sensor 
failure/disbond (b1), sensor bond degradation (b2), sensor replacement (b3), and local maintenance actions (b4) were 
considered in the POD evaluation study. Assumptions concerning their frequency can be made and empirical models 
representing their effect can be evaluated and applied in conjunction with the scope of the SHM application.

To complete the POD evaluation, an assessment of the detection model under varying input conditions including 
uncertainty propagation is necessary. A second-order probabilistic approach has been developed to propagate both 
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aleatory uncertainty, due to inherent randomness in system behavior, and epistemic uncertainty, due to a lack of 
knowledge about values expected to be fixed [15-16]. Using this approach, epistemic variables are specified as 
intervals on values of parameters such as the means and standard deviations of random variables. For this study, the 
distributions for the input variables, mean temperature and temperature gradients, are presented in Fig. 4. Monte Carlo 
analysis is then applied here using outer and inner loops. The outer loop varies the values of distribution parameters 
of selected epistemic variables while the inner loop samples from the distributions. 

FIGURE 4. Parameter distributions: (a) mean normalized temperature (T), (b) maximum temperature gradient (dTmax / 10 F). 

Sensitivity of POD to Flaw Location 

Following acquisition of the experimental data, a regression model fit was performed using the R software 
environment. Three different flaw models were considered in the evaluation:  (a) a flaw 2 and 3 combined evaluation 
(including flaw location factor, a2), (b) a flaw 2 evaluation only, and (c) a flaw 3 evaluation only. One reason for 
performing and studying separate model fits for the different flaw growth sites was due to early observations that the 
SHM system was more sensitive to changes in flaw 3 with respect to changes in flaw 2. POD analysis results for the 
vibration-based SHM study are presented in Fig. 5 with respect to flaw size (in inches) for the case of a damage call 
threshold of 0.05.  For each POD evaluation, both input parameter variation and model uncertainty are addressed 
through a two-level Monte Carlo simulation. From these results, there is clear need to separately evaluate the POD 
models for flaw 2 and flaw 3 locations. A single POD curve does not properly address the poor detection capability at 
the flaw 2 location as a function of performance at large flaw size. Using the ‘flaw 2 and 3 combined’ results will give 
one a false sense of security in terms of detection capability. Note, for any future SHM validation study, care must be 
taken to ensure the ‘overall’ POD capability evaluations do not mask ‘isolated’ flaw locations that have poor detection 
capability. Likewise, the low false call rate in the flaw 3 model is likely due to the flaw 3 model only including a 
portion of the simulation study variation.

FIGURE 5. POD results with respect to flaw size including uncertainty bounds for (a) combined flaw 2
and and (c) flaw 3 only (dm_threshold = 0.05, use median sensor response).

Impact of Sensor Degradation over Time 

This analysis approach also enables the evaluation of the impact of sensor durability on POD performance. 
Evidence from strain gauge sensor data on C-17 aircraft demonstrates the need for assessing the impact of degradation, 
where 22% of the sensors were infant failures and about 40% of the total failed within the first ten years of the aircraft 

(a) (b)

(b) (c)(a)
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life [28]. Given that only eight sensors are present in the subject SHM system, the scenario of 25% failures, two 
accelerometers, was considered during the first 6 year period of operation. Fig. 6(a) presents two probability density 
functions for the time to failure for the first and second sensors. Data tables were constructed evaluating POD models 
for all of the ‘single sensor’ and 'two sensor’ failure scenarios. A Monte Carlo simulation was then performed using 
10000 samples from the time to failure distributions for the first and second sensors. Results are presented in Fig. 6(b) 
for the mean value from the composite Monte Carlo simulation POD results at a flaw size of 1.0 inch as a function of 
time. This analysis is useful because it highlights the sensitivity of certain flaw locations to degradation in the SHM 
system. In particular, the detection of flaw 2 suffers from weak crack sensitivity with respect to significant noise 
sensitivity due to varying temperature conditions. 

FIGURE 6. (a) Case study probability density functions for the time to failure for the first sensor and second sensor, 
(b) mean expected probability of detection (POD) at a flaw size of 1.0 in. with respect to time for all SHM systems found in 

the field.

CONCLUSIONS AND FUTURE WORK

To address validation of NDE characterization capability, a comprehensive approach to NDE characterization error 
evaluation was presented with a case study that follows the framework of the ‘ahat-versus-a’ model evaluation process 
for POD assessment.  As well, work was presented on a protocol and demonstration for evaluating structural health 
monitoring system reliability. The design and results of the full validation study highlight the general protocol 
feasibility, emphasize the importance of evaluating the key application characteristics prior to the POD study, and 
demonstrate an approach to quantify varying sensor durability on the POD performance. However, challenges remain, 
in particular on how to properly address long time-scale effects with accelerated testing and how to address large 
testing requirements given the independence of each flaw location in the evaluation. More rigorous demonstrations 
are clearly needed for the most-promising SHM technologies.  Model-assisted evaluation using validated NDE and 
SHM models should also help address these issues and mitigate the cost of performing these studies.  
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